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Estimation of variance

Estimation of Variance

z =
X − µ
σ/
√

n

t =
X − µ
s/
√

n

χ2
n−1 =

s2(n − 1)

σ2
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Estimation of variance

Chi-square table

a

Tail Probability P(χ2 ≥ a)

df 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
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Estimation of variance

Problem 1.1

A supplier of 100 ohm/cm silicon wafers claims that his fabrication process can produce

wafers with sufficient consistency so that the standard deviation of resistance for the lot

does not exceed 10 ohm/cm. A sample of 10 wafers taken from the lot has a standard

deviation of 13.97 ohm/cm. Is the suppliers claim reasonable?

Solution

H0 : σ = 10

Ha : σ > 10

df = 10− 1 = 9, P(s2 > 13.972) = P(χ2(9) > 9∗13.972

102 ) = P(χ2(9) > 17.56) =

0.0406

17.56

0.0406

At 5% significance level the suppliers claim doesn’t seem reasonable, i.e., there is

enough reason to believe that σ > 10.
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Estimation of variance

Problem 1.2

A container of oil is supposed to contain 1000 ml of oil. We want to be sure that the

standard deviation of the oil container is less than 20 ml. We randomly select 10 cans of

oil with a mean of 997 ml and a standard deviation of 32 ml. Using these sample

construct a 95% confidence interval for the true value of sigma. Does the confidence

interval suggest that the variation in oil containers is at an acceptable level?

Solution

Two-sided interval

2.7 19

0.0250.025

P(2.7 < χ2(9) < 19) = 0.95

2.7 < 9∗322

σ2 < 19
9∗322

19
< σ2 < 9∗322

2.7

We are 95% confident that σ2 is between 22 and 58 ml.
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Estimation of variance

Fisher F -distribution

s2
1 (n1−1)

σ2
1
∼ χ2

n1−1

s2
2 (n2−1)

σ2
2
∼ χ2

n2−1

s2
1/σ

2
1

s2
2/σ

2
2
∼

1
n1−1

χ2
n1−1

1
n2−1

χ2
n2−1

= F (n1 − 1, n2 − 1)

The F-distribution is the ratio of two independent χ2 variables divided by their

respective degrees of freedom

The F-test is designed to test if two population variances are equal

H0 : σ2
1 = σ2

2

Ha : σ2
1 6= σ2

2
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Fisher F -test

Fisher F -distribution

F (df1, df2)

0.05

df1 df1 = 2 2 3 4 5 6 7 8 9 10

1 161.45 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96

2 199.50 19.00 9.55 6.94 5.79 5.14 4.74 4.46 4.26 4.10

3 215.71 19.16 9.28 6.59 5.41 4.76 4.35 4.07 3.86 3.71

4 224.58 19.25 9.12 6.39 5.19 4.53 4.12 3.84 3.63 3.48

5 230.16 19.30 9.01 6.26 5.05 4.39 3.97 3.69 3.48 3.33

6 233.99 19.33 8.94 6.16 4.95 4.28 3.87 3.58 3.37 3.22

7 236.77 19.35 8.89 6.09 4.88 4.21 3.79 3.50 3.29 3.14

8 238.88 19.37 8.85 6.04 4.82 4.15 3.73 3.44 3.23 3.07

9 240.54 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02

10 241.88 19.40 8.79 5.96 4.74 4.06 3.64 3.35 3.14 2.98

P
(

F (df1, df2) < x
)

= P

(
1

F (df1, df2)
>

1

x

)
= P

(
F (df2, df1) >

1

x

)
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Fisher F -test

Problem 2.1 (Exercise laboratory problem revisited)

A hospital exercise laboratory technician notes the resting pulse rates of five joggers to be

60, 58, 59, 61, and 67, respectively, while the resting pulse rates of seven non-exercisers

are 83, 60, 75, 71, 91, 82, and 84, respectively. The means and standard deviations for

these samples are 61, 78, 3.54, and 10.23, respectively. Is equal variances assumption

reasonable in this case?

Solution

H0 : σ2
1 = σ2

2

Ha : σ2
1 6= σ2

2

F =
s2
1/σ

2
1

s2
2/σ

2
2

=
s2
1

s2
2

= 3.54
10.23

= 0.346

df1 = 5− 1 = 4; df2 = 7− 1 = 6

P(F (4, 6) < 0.346) = P(F (6, 4) > 1
0.346

) = P(F (6, 4) > 2.89) > 0.05 since

F0.05(6, 4) = 6.16

There is not enough evidence to reject H0 at the 5% significance level, i.e., equal

variances assumption is not unreasonable.
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Estimation of sample size

Estimation of Sample Size

What is a minimum sample size needed to estimate the population mean within 2

units?

What is a minimum sample size needed to estimate the population proportion within

2 percent units?

Dmitri Pervouchine Applied Statistics Module 4: Statistical Inference, Part II. 10 / 45



Estimation of sample size

Problem 3.1

An electrical firm which manufactures a certain type of bulb wants to estimate its mean

life. Assuming that the life of the light bulb is normally distributed and that the standard

deviation is known to be 40 hours, how many bulbs should be tested so that we can be

90% confident that the estimate of the mean will not differ from the true mean life by

more than 10 hours?

Solution

µ = X±zα/2 · σ√n
, where zα/2 · σ√n

= 10

-1.64 1.64

0.05

1.64 40√
n

= 10

n = 43.03→ 44
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Estimation of sample size

Problem 3.2

A quality control engineer wants to estimate the fraction of defective bulbs in a large lot

of light bulbs. From past experience, he feels that the actual fraction of defective bulbs

should be somewhere around 0.2 . How large a sample should be taken if he wants to

estimate the true fraction within .02 using a 95% confidence interval?

Solution

p = p̂±zα/2 ·
√

p(1−p)
n

, where zα/2 ·
√

p(1−p)
n

= 0.02

-1.96 1.96

0.025

1.96
√

0.2∗0.8
n

= 0.02

n = 1536.64→ 1537
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Estimation of sample size

Problem 3.3

Many television viewers express doubts about the validity of certain commercials. Let p

represent the true proportion of consumers who believe what is shown in Timex television

commercials. If Timex has no prior information regarding the true value of p, how many

consumers should be included in their sample so that they will be 85% confident that

their estimate is within 0.03 of the true value of p?

Solution

p = p̂±zα/2 ·
√

p(1−p)
n

, where zα/2 ·
√

p(1−p)
n

= 0.03

-1.44 1.44

0.075

y

x

y = x(1 − x)

0.5 1 p = 1
2

is the “worst” case

1.44
√

0.5∗0.5
n

= 0.03

n = 576
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Estimation of sample size

Contribution of type I and type II errors

a

α

µ0

β

µ1

What is n such that the probability of committing type I error is α and the probability of

committing type II error is β? The size of the effect is µ1 − µ0 = ∆.

P(X > a|µ = µ0) = α P(X < a|µ = µ1) = β

{ a−µ0
σ/
√

n
= zα

µ1−a
σ/
√

n
= zβ

a = µ0 + zα
σ√

n
= µ1 − zβ

σ√
n

(zα + zβ) σ√
n

= µ1 − µ0 = ∆

n =
(

(zα+zβ )σ

∆

)2
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Estimation of sample size

Problem 3.4

A clinical research organization is to design a pre-clinical of efficacy of a new drug to

reduce the cholesterol level. The drug will be commercialized if the reduction of

cholesterol be at least 2 mg/dL. Assuming the standard deviation of the cholesterol level

in the target population is 20 mg/dL, what is the minimum sample size to achieve the

desired reduction with at 5% significance level and with 15% type II error rate (85%

power)?

Solution

zα = z0.05 = 1.64

z = 1.64

0.05

zβ = z0.15 = 1.03

z = 1.03

0.15

n =
(

(zα+zβ )σ

∆

)2
=
(

(1.64+1.03)20
2

)2
= 718.93→ 719
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Non-parametric tests Chi-square Test for Independence

Chi-square Test for Independence

The test is applied when you have two categorical variables from a single population. It is

used to determine whether there is a significant association between the two variables.

χ2 test is applied to a contingency table with two factors

H0 : factors are independent

Ha : factors are dependent
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Non-parametric tests Chi-square Test for Independence

Problem 4.1

A restaurant owner surveys a random sample of 385 customers to determine whether

customer satisfaction is related to gender and age.

Young Male Young Female Adult Male Adult Female

Satisfied 25 30 135 112

Not satisfied 8 16 22 37

Solution

Young M Young F Adult M Adult F Total

Satisfied 25 30 135 112 302

Not satisfied 8 16 22 37 83

Total 33 46 157 149 385

If gender/age and satisfaction were independent then P(satisfied ∩ young male) = P(satisfied) P(young male)
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Non-parametric tests Chi-square Test for Independence

Observed and Expected

P(satisfied) = 302/385

P(young male) = 33/385

P(satisfied ∩ young male) = 302 ∗ 33/3852

Expected number of satisfied young males = 302 ∗ 33/385

Observed:
Young M Young F Adult M Adult F Total

Satisfied 25 30 135 112 302

Not satisfied 8 16 22 37 83

Total 33 46 157 149 385

Expected:

Young M Young F Adult M Adult F Total

Satisfied 25.9 36.1 123.1 116.9 302

Not satisfied 7.1 9.9 33.9 32.1 83

Total 33 46 157 149 385
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Non-parametric tests Chi-square Test for Independence

Chi-square Test for Independence

χ2 =
∑ (O − E)2

E

χ2 =
(25− 25.9)2

25.9
+

(30− 36.1)2

36.1
+ . . . = 11.1

df = (n − 1)(m − 1) = (2− 1)(4− 1) = 3

P(χ2(3) ≥ 11.1) = 0.112

11.1

0.0112

At 5% significance level H0 is rejected, i.e., there is evidence in this data that gender/age

and satisfaction are not independent.
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Non-parametric tests Chi-square Goodness of Fit

Chi-square Goodness of Fit

Problem 4.2

A grocery store manager wishes to determine whether a certain product will sell equally

well in any of the five locations in the store. Five displays are set up, one for each

location, and the resulting numbers of the product sold are noted

Location 1 2 3 4 5

Items sold 43 29 52 34 48

Is there enough evidence to claim a difference?

Solution

H0 : The distribution is uniform

Ha : The distribution is not uniform

Total = 43+29+52+34+48=206

We expect 206/5=41.2 units sold in each location
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Non-parametric tests Chi-square Goodness of Fit

Chi-square Goodness of Fit

Location 1 2 3 4 5

Items sold 43 29 52 34 48

Expected 41.2 41.2 41.2 41.2 41.2

χ2 =
∑ (O − E)2

E
=

(43− 41.2)2

41.2
+ . . . = 8.9

df = n − 1

P(χ2(4) ≥ 8.9) = 0.0636

8.9

0.0636

At 5% significance level H0 is not rejected, i.e., there is not enough evidence to claim

that the five locations in the store are different.
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Non-parametric tests Chi-square Goodness of Fit

Problem 4.3

A geneticist claims that four species of fruit flies should appear in the ratio of 1:3:3:9. Suppose

that a sample of 4000 fruit flies contained 226, 764, 733, and 2277 flies of each species,

respectively. At the 10% significance level, is there sufficient evidence to reject the geneticist’s

hypothesis?

Solution

1
16

+ 3
16

+ 3
16

+ 9
16

= 1, that is 4000 = 250 + 750 + 750 + 2250

Observed 226 764 733 2277

Expected 250 750 750 2250

χ2 =
∑ (O−E)2

E
= (226−250)2

250
+ (764−750)2

750
+ . . . = 3.27 3.27

0.3518

The geneticist’s hypothesis about 1:3:3:9 ratio is not rejected at any reasonable significance

level, there is no reason to believe it is not true.
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Non-parametric tests Chi-square Goodness of Fit

Problem 4.4

Weights of rice bags are supposed to have normal distribution. A random sample of 40 such bags was taken

and the following frequencies were obtained.

weight below 480 480-490 490-500 500-510 510-520 above 520

number of bags 6 9 10 8 4 3

Test the hypothesis that rice bags were chosen from a normal distribution with the mean weight of 500 grams

and standard deviation of 18 grams.

Solution

weight below 480 480-490 490-500 500-510 510-520 above 520

z < −1.11 z ∈ (−1.11,−0.55] z ∈ (−0.55, 0] z ∈ (0, 0.55] z ∈ (0.55, 1.11] z > 1.11

exp. prob 0.1333 0.156 0.2107 0.2107 0.156 0.1333

exp. count 5.3 6.2 8.4 8.4 6.2 5.3

observed 6 9 10 8 4 3

χ
2 =

∑ (O − E)2

E
=

(6− 5.3)2

5.3
+ · · · = 3.44

P(χ2(5) > 3.44) = 0.63, i.e., there is no evidence against the claim that rice bags were chosen from a normal

distribution with the mean weight of 500 grams and standard deviation of 18 grams.
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Non-parametric tests Chi-square Goodness of Fit

Problem 4.4

Weights of rice bags are supposed to have normal distribution. A random sample of 40 such bags was taken

and the following frequencies were obtained.

weight below 480 480-490 490-500 500-510 510-520 above 520

number of bags 6 9 10 8 4 3

Test the hypothesis that rice bags were chosen from a normal distribution with the mean weight of 500 grams

and standard deviation of 18 grams.

Solution

weight below 480 480-490 490-500 500-510 510-520 above 520

z < −1.11 z ∈ (−1.11,−0.55] z ∈ (−0.55, 0] z ∈ (0, 0.55] z ∈ (0.55, 1.11] z > 1.11

exp. prob 0.1333 0.156 0.2107 0.2107 0.156 0.1333

exp. count 5.3 6.2 8.4 8.4 6.2 5.3

observed 6 9 10 8 4 3

χ
2 =

∑ (O − E)2

E
=

(6− 5.3)2

5.3
+ · · · = 3.44

P(χ2(5) > 3.44) = 0.63, i.e., there is no evidence against the claim that rice bags were chosen from a normal

distribution with the mean weight of 500 grams and standard deviation of 18 grams.

Dmitri Pervouchine Applied Statistics Module 4: Statistical Inference, Part II. 23 / 45



Non-parametric tests Chi-square Goodness of Fit

Chi-square test: Warning

Chi-square test is applicable only if the expected value in each cell is greater than 5

(Compare to Binomial Distribution)

Small expected values lead to higher uncertainty in χ2 =
∑ (O−E)2

E

You might find Fisher exact test (Hypergeometric test) also useful
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Non-parametric tests Chi-square Goodness of Fit

Hypergeometric Test

Problem 4.5

A sample of teenagers might be divided into male and female on the one hand, and those that

are and are not currently dieting on the other. We hypothesize, perhaps, that the proportion of

dieting individuals is higher among the women than among the men, and we want to test

whether any difference of proportions that we observe is significant.

Men Women Total

Dieting 1 9 10

Not dieting 11 3 14

Total 12 12 24

Solution Men Women Total

Dieting 5 5 10

Not dieting 7 7 14

Total 12 12 24

Expected < 5
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Non-parametric tests Chi-square Goodness of Fit

Hypergeometric Test

Men Women Total

Dieting 1 9 10

Not dieting 11 3 14

Total 12 12 24

Men Women Total

Dieting a b a + b

Not dieting c d c + d

Total a + c b + d n

P =

(
a+b

a

)(
c+d

c

)(
n

a+c

) =
(a + b)!(c + d)!(a + c)!(b + d)!

n!a!b!c!d!

P =
10!14!12!12!

24!1!9!11!3!
= 0.0013

Note that

Exact computation with factorials of large numbers is troublesome

Hypergeometric test is a point test, i.e., it estimates the probability of exactly the

table that was observed. If you are interested in deviations in certain direction, you

have to repeat hypergeometric test to compute hypergeometric CDF
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Non-parametric tests Sign test

Sign test

The sign test is a method to find consistent ordinal differences between pairs of

observations. It determines if one member in the pair of observations tends to be greater

than the other member. Unlike t-test, there is no assumption of normality for small

samples, neither any other assumption about the nature of the random variable.

H0 : median1 = median2

Ha : median1 > median2

Sample (Xi ,Yi ), i = 1. . .n

p̂ = sample proportion of Xi > Yi

Ties are split randomly between Xi > Yi and Xi < Yi
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Non-parametric tests Sign test

Sign test

Problem 4.6

The following data was collected about the weights of ten patients in the treatment group taking

certain weight-control medication. Do these data suggest that the weight-control medication

works?

Patient Before After

1 200 197

2 202 204

3 194 167

4 188 192

5 166 166

Patient Before After

6 196 190

7 180 176

8 188 182

9 180 180

10 210 202

Solution

Out of 10 patients, 5 reduced weight, 3 gained weight, and 2 stayed unchanged.

X ∼ Bi(n = 10, p = 0.5)

P(X ≥ 6) = P(X = 6) + P(X = 7) + · · ·+ P(X = 10) = 0.3770, there is not enough

evidence to claim that the medication works.
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Non-parametric tests Mann-Whitney U-test

Mann-Whitney U-test

Wilcoxon-Mann-Whitney test

X and Y are two populations

H0 : P(X > Y ) = P(Y > X )

Ha : P(X > Y ) 6= P(Y > X )

U-statistic

{X1, . . . ,Xn} and {Y1, . . . ,Ym} are two samples

Assign ranks to all the observations {X1, . . . ,Xn,Y1, . . . ,Ym}

R1 = the sum of ranks for the observations which came from sample 1

R2 = the sum of ranks for the observations which came from sample 2

U1 = R1 − n(n+1)
2

U2 = R2 − m(m+1)
2

U = max{U1,U2}

In case of ties there is a small correction to this procedure
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Non-parametric tests Mann-Whitney U-test

Mann-Whitney critical values and probabilities

Critical values p = 0.05
n1\n2 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 3 4 4 5 6 7 8 9 10 11 11 12 13 13

5 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

9 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 14 17 20 23 26 29 33 36 39 42 45 48 52 55

11 16 19 23 26 30 33 37 40 44 47 51 55 58 62

12 18 22 26 29 33 37 41 45 49 53 57 61 65 69

U ∼ N (µ, σ)

µ =
n1n2

2

σ =

√
n1n2(n1 + n2 + 1)

12
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Non-parametric tests Mann-Whitney U-test

Problem 4.7

A hospital exercise laboratory technician notes the resting pulse rates of five joggers to be

60, 58, 59, 61, and 67, respectively, while the resting pulse rates of seven non-exercisers

are 83, 60, 75, 71, 91, 82, and 84, respectively. Use Mann-Whitney criterion to test

whether resting pulse rates of joggers tend to be different from the resting pulse rates of

non-exercisers.

Solution

60, 58, 59, 61, 67, 83, 60, 75, 71, 91, 82, 84

58, 59, 60, 60, 61, 67, 71, 75, 82, 83, 84, 91

1, 2, 3.5, 3.5, 5, 6, 7, 8, 9, 10, 11, 12

R1 = 1 + 2 + 3.5 + 5 + 6, R2 = 3.5 + 7 + 8 + 9 + 10 + 11 + 12

U1 = 17.5− 5 ∗ 4/2 = 7.5, U2 = 60.5− 7 ∗ 6/2 = 39.5

U = 39.5 > U0.05(5, 7) = 5, therefore H0 is rejected, i.e. there is enough evidence at the

5% significance level that the resting pulse rates of joggers are different from the resting

pulse rates of non-exercisers.
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Non-parametric tests Wilcoxon signed-rank test

Wilcoxon signed-rank test

The Wilcoxon signed-rank test is used to assess whether the differences are symmetric

and centered around zero

H0 : differences follow a symmetric distribution around zero

H1 : differences don’t follow a symmetric distribution around zero

W -statistic

{X1, . . . ,Xn} and {Y1, . . . ,Yn} are paired samples

Compute di = |Xi − Yi | = 0 and exclude elements with di = 0

Sort di ascending

W =
∑

sgn(Xi − Yi ) ∗ Ri , where Ri is the rank of di

W ∼ N

(
µ = 0, σ =

√
n(n+1)(2n+1)

6

)
for n ≥ 10
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Non-parametric tests Wilcoxon signed-rank test

Problem 4.8

Twelve volunteers tested the efficacy of a new fuel additive in their cars. They first ride a full

tank without additive and record the number of miles to reach the fuel indicator threshold, and

then re-fuel with the additive and repeat the same measurement until the indicator light shows

on. The following data were obtained without: 125.3, 101.0, 117.2, 133.7, 96.4, 124.5, 118.7,

106.2, 116.3, 120.2, 125.0, 128.8, and with additive 127.3, 120.2, 126.2, 125.4, 115.1, 118.5,

135.5, 118.2, 122.9, 120.1, 120.8, 130.7

Solution

N before after d |d| sign rank sign * rank

1 125.3 127.3 2 2 1 3 3

2 101 120.2 19.2 19.2 1 12 12

3 117.2 126.2 9 9 1 8 8

4 133.7 125.4 -8.3 8.3 -1 7 -7

5 96.4 115.1 18.7 18.7 1 11 11

6 124.5 118.5 -6 6 -1 5 -5

7 118.7 135.5 16.8 16.8 1 10 10

8 106.2 118.2 12 12 1 9 9

9 116.3 122.9 6.6 6.6 1 6 6

10 120.2 120.1 0.1 0.1 1 1 1

11 125 120.8 -4.2 4.2 -1 4 -4

12 128.8 130.7 1.9 1.9 1 2 2

W = 46, n = 11

σ =

√
n(n + 1)(2n + 1)

6
= 25.5

z =
46− 0

25.5
= 1.80

z=1.8

0.035

H0 is rejected at the 5% sign. level
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Non-parametric tests Kolmogorov-Smirnov test

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS test) is a non-parametric test to check whether the

empirical cumulative distribution function (eCDF) comes from a reference probability

distribution, or whether two eCDFs come from the same reference distribution.

eCDF comes from a reference probability distribution (one-sample KS test)

two eCDFs come from the same reference distribution (two-sample KS test)
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Non-parametric tests Kolmogorov-Smirnov test

One-sample Kolmogorov-Smirnov test
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●
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Dn = sup
x
|Fn(x)− F (x)|

If F (x) is continuous then Dn doesn’t depend on F (x)

P(
√

nDn≤x) = H(x) = 1− 2
∞∑

k=1

(−1)k−1e−2k2x

H(x) is called Kolmogorov-Smirnov distribution
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Non-parametric tests Kolmogorov-Smirnov test

Kolmogorov-Smirnov distribution

Critical values for sup
x
|Fn(x) − F (x)|

Level of significance, α

n 0.10 0.05 0.02 0.01

1 0.95000 0.97500 0.99000 0.99500

2 0.77639 0.84189 0.90000 0.92929

3 0.63604 0.70760 0.78456 0.82900

4 0.56522 0.62394 0.68887 0.73424

5 0.50945 0.56328 0.62718 0.66853

6 0.46799 0.51926 0.57741 0.61661

7 0.43607 0.48342 0.53844 0.57581

8 0.40962 0.45427 0.50654 0.54179

9 0.38746 0.43001 0.47960 0.51332

10 0.36866 0.40925 0.45662 0.48893

11 0.35242 0.39122 0.43670 0.46770

12 0.33815 0.37543 0.41918 0.44905

13 0.32549 0.36143 0.40362 0.43247

14 0.31417 0.34890 0.38970 0.41762

15 0.30397 0.33760 0.37713 0.40420

16 0.29472 0.32733 0.36571 0.39201

17 0.28627 0.31796 0.35528 0.38086

18 0.27851 0.30936 0.34569 0.37062

19 0.27136 0.30143 0.33685 0.36117

20 0.26473 0.29408 0.32866 0.35241
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Non-parametric tests Kolmogorov-Smirnov test

Problem 4.9

Test at the 5% significance level that the sample 0.58, 0.42, 0.52, 0.33, 0.43, 0.23, 0.58,

0.76, 0.53, 0.64 comes from a uniform distribution on the interval [0, 1]

Solution
x eCDF

1 0.23 0.10

2 0.33 0.20

3 0.42 0.30

4 0.43 0.40

5 0.52 0.50

6 0.53 0.60

7 0.58 0.70

8 0.58 0.80

9 0.64 0.90

10 0.76 1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

D = 0.90− 0.64 = 0.26

P(Dn > 0.40925) = 0.05

0.26 < 0.40925, i.e., there is not

enough evidence to reject H0, i.e.,

it’s not unlikely that the sample

comes from a uniform distribution.
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Non-parametric tests Kolmogorov-Smirnov test

Two-sample Kolmogorov-Smirnov test
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H0 : the two CDFs, Fn(x) and Gm(x), came from the same distribution

Dn,m = sup
x
|Fn(x)− Gm(x)|

Dn,m,α = c(α)
√

1
n

+ 1
m

α 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Reject H0 if Dn,m > Dn,m,α

Dmitri Pervouchine Applied Statistics Module 4: Statistical Inference, Part II. 38 / 45



Non-parametric tests Kolmogorov-Smirnov test

Two-sample Kolmogorov-Smirnov test

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

H0 : the two CDFs, Fn(x) and Gm(x), came from the same distribution

Dn,m = sup
x
|Fn(x)− Gm(x)|

Dn,m,α = c(α)
√

1
n

+ 1
m

α 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Reject H0 if Dn,m > Dn,m,α

Dmitri Pervouchine Applied Statistics Module 4: Statistical Inference, Part II. 38 / 45



Non-parametric tests Kolmogorov-Smirnov test

Two-sample Kolmogorov-Smirnov test

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

H0 : the two CDFs, Fn(x) and Gm(x), came from the same distribution

Dn,m = sup
x
|Fn(x)− Gm(x)|

Dn,m,α = c(α)
√

1
n

+ 1
m

α 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Reject H0 if Dn,m > Dn,m,α

Dmitri Pervouchine Applied Statistics Module 4: Statistical Inference, Part II. 38 / 45



Non-parametric tests Kolmogorov-Smirnov test

Two-sample Kolmogorov-Smirnov test

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

H0 : the two CDFs, Fn(x) and Gm(x), came from the same distribution

Dn,m = sup
x
|Fn(x)− Gm(x)|

Dn,m,α = c(α)
√

1
n

+ 1
m

α 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Reject H0 if Dn,m > Dn,m,α

Dmitri Pervouchine Applied Statistics Module 4: Statistical Inference, Part II. 38 / 45



Non-parametric tests Kolmogorov-Smirnov test

Problem 4.10

Test whether the following two samples come from the same distribution.

Sample 1: 0.05, 0.93, 0.62, 0.9, 0.84, 0.36, 0.26, 0.56, 0.02, 0.84

Sample 2: 0.39, 0.91, 0.86, 0.21, 0.39, 0.9, 0.1, 0.28, 0.02, 0.53, 0.08, 0.19

Solution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

D = 0.35

n = 10,m = 12

D10,12,0.05 = 1.36 ∗
√

1

10
+

1

12
= 0.58

0.35 < 0.58, i.e., there is not enough evidence to reject H0,

i.e., it’s not unlikely that the two samples come from different

distributions.
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Non-parametric tests Comparing distributions

QQ-plot

A QQ-plot is a graphical method for comparing two probability distributions by plotting

their quantiles against each other.

X = {X1,X2, . . . ,Xn} → sorted: X(1)≤X(2)≤ . . .≤X(n)

X(i) – ith order statistic, i.e., the ith element in the ordered sample

Y = {Y1,Y2, . . . ,Yn} → sorted: Y(1)≤Y(2)≤ . . .≤Y(n)

Plot X(i) vs Y(i)
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Y = {Y1,Y2, . . . ,Yn} → sorted: Y(1)≤Y(2)≤ . . .≤Y(n)

Plot X(i) vs Y(i)
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Non-parametric tests Comparing distributions

QQ-plot

More generally plot sample quantiles against each other, or plot sample quantiles versus theoretical

quantiles

Sorted sample: -1.26, -1.19, -1.13, -0.76, -0.73, -0.5, -0.38, -0.34, -0.3, -0.11, 0.02, 0.19, 0.33, 0.5, 0.51,

0.58, 0.59, 0.84, 0.95, 1

Probabilities equally spaced from 0 to 1: 0.05, 0.1, 0.14, 0.19, 0.24, 0.29, 0.33, 0.38, 0.43, 0.48, 0.52,

0.57, 0.62, 0.67, 0.71, 0.76, 0.81, 0.86, 0.9, 0.95

Quantiles of the normal distribution: -1.67, -1.31, -1.07, -0.88, -0.71, -0.57, -0.43, -0.3, -0.18, -0.06,

0.06, 0.18, 0.3, 0.43, 0.57, 0.71, 0.88, 1.07, 1.31, 1.67
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Non-parametric tests Shapiro normality test

Shapiro normality test

The Shapiro-Wilk test checks whether a sample X1, ...,Xn came from a normally

distributed population.

W =

n∑
i=1

ai X(i)

n∑
i=1

(X(i) − X )2

X(i) are ith order statistic, i.e., the ith element in the ordered sample

Coefficients ai are computed from the expected values of the order statistics of

independent and identically distributed random variables sampled from the standard

normal distribution, and from the covariance matrix of those order statistics
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Correction for multiple testing

Correction for multiple testing

As more symptoms are considered when testing the drug, it becomes more likely

that it will do an improvement of at least one symptom

As more types of side effects are considered when testing the drug, it becomes more

likely that it will appear to be less safe in terms of at least one side effect
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Correction for multiple testing

Familywise error rate

FWER is the probability of making one or more type I errors when performing multiple

hypotheses tests

α̃ = 1− (1− α)k

Bonferroni correction: use α̃/k per comparison

or multiply the P-value by k

Šidák correction: 1− (1− α̃)
1
k per comparison

or transform P-value as 1− (1− p)k

Holm-Bonferroni method: use different thresholds per comparison

order P-values from lowest to highest p1, . . . , pm

reject Hi if pi <
α̃

k−i+1
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Correction for multiple testing

Summary

Sample variance s2 is proportional to χ2 if the population is normal

The ratio of sample variances of independent samples has Fisher F -distribution

If population proportion is unknown, use p = 1
2

to estimate sample size

χ2 test for independence vs. χ2 test for goodness of fit

χ2 test cannot be used when expected counts < 5

Sign, Mann-Whitney, and Wilcoxon test do not require normal population

One-sided KS test checks if a sample comes from the given population

Two-sided KS test checks if two samples come from the same population

Familywise error rate is the probability of making one or more type I errors when

performing multiple hypotheses tests
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